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I. Introduction 

For many purposes it is helpful to distinguish between two different 
approaches to problems involving distortions of crystals: the atomic and the 
metric. An atomic view is generally a pictorial one that takes account of 
individual atoms or molecules, their arrangements, and their interactions with 
one another; it is useful in making first-order models but is difficult when even 
semiquantitative calculations are required. A metric approach concentrates 
attention on the crystal lattice and often regards it as embedded in a uniform 
elastic medium, with certain limitations being placed upon the types of lattice 
discontinuity that are permitted. The degree of abstraction is thus higher than 
for an atomic approach and leads to some sacrifice in visualizing the physical 
situation, but at the same time certain patterns become much more explicit 
and semiquantitative calculations are quite readily possible. 

In the discussion of crystal interfaces these two approaches can be fairly 
readily recognized. The pioneering work of Burgers (1940) and Bragg (1940) 
began with an atomic picture in which each crystal was supposed to be 
continuous up to the interface. They then abstracted this to a metric model in 
which the connections between the two parts of the bicrystal were provided 
by an array of dislocations. This abstraction provides an excellent description 
of the interface for small mismatches between the two crystals—orientation 
differences up to about 15° or lattice-parameter differences up to about 20%— 
but for boundaries of greater mismatch than this the dislocations begin to 
overlap and the picture is no longer clear. 

The classic work of Read and Shockley (1950) showed how this dislocation 
model could be made into a semiquantitative theory and yielded the well-known 
result 

Ε(θ) = τθ(Α-Ιηθ) (1) 

for the energy E per unit area of an interface with misorientation angle Θ. 
The elastic coefficient τ was given explicitly in terms of the known elastic 
parameters of the crystal material, while the quantity A, which was related to 
the unknown "core energy" of a dislocation, was chosen to give best fit with 
experiment. Quite similarly, for a boundary between two crystals with 
fractional lattice-parameter difference 3, we find (Fletcher, 1971) 

Ε(δ) = τ'δ(Α'-\ηδ) (2) 

This simple model was extended to orientations for which a row of equally 
spaced dislocations appears inadequate by the introduction of hierarchies of 
dislocations (Read and Shockley, 1950; du Plessis and van der Merwe, 1965), 
but while this artifice gives a successful numerical result it constitutes some
thing of a bar to the visualization of the model in atomic terms. Further 
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important extensions of this approach to deal more particularly with epitaxial 
systems were introduced by Frank and van der Merwe (1949) and further 
developed by van der Merwe (1950) and his co-workers and by Fletcher 
(1964). These matters have been discussed in detail in earlier chapters and 
their considerable contribution to our understanding set out. The method 
suffers limitations because of the uncertainty of its application to interfaces 
of large mismatch, the necessity of making a further ad hoc introduction of 
crystal symmetry, and the somewhat artificial treatment of dislocation cores. 
We shall not, however, discuss these points here (see Fletcher, 1971). 

Among treatments of interfaces that we might classify as primarily atomic 
are those based upon a simplified picture of atomic arrangements in the 
interface—"island" models (Mott, 1948), coincidence-lattice models (Brandon, 
1966), and the like. A recent survey has been given by Gifkins (1969), and some 
of these matters are also discussed in the present volume. The 0-lattice concept 
introduced by Bollmann (1967) serves to formalize many of these ideas and 
to provide a basic means of describing and predicting atomic relationships 
across an interface. 

Attractive and useful as these models are, they provide very little more than 
qualitative information about interface energy, even when they are extended 
to include some of the features of a dislocation description of the interface 
(Brandon, 1966; Bollmann, 1967). This is understandable, since the reasons 
for the development of the models were generally to provide a physical 
picture rather than to serve as an aid to computation. 

The only basically atomic approach to a direct calculation of interface 
energy that has so far been developed appears to be that of Fletcher and his 
students (Fletcher, 1964, 1967; Fletcher and Adamson, 1966; Lodge 1970). 
The purpose of this chapter is to describe that method, to show its relationship 
to the various atomic and metric models mentioned above, and to show how 
it can be used to calculate interface energy in a real situation. Finally we shall 
make some remarks about interfacial entropy and interfacial free energy at a 
finite temperature. 

I I . The Interface Problem from First Principles 

Before we begin to make any sort of calculation about an interface we must 
decide exactly what we are trying to calculate. Interfaces between real crystals 
will generally tend to modify their structure with time, so that the free energy 
of the system of which they are a part is minimized. This minimization will, 
however, generally be subject to one or more constraints governing the relative 
orientations of the two crystals (as when two grains grow together in a 
solidifying melt) or of the boundary relative to one of the crystals (as when 
an epitaxial film is deposited on a substrate of high melting point). We shall 
also generally assume that the two crystals are mutually insoluble. 
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We seek therefore, to be realistic, a minimum in the free energy of the 
system through variation of the interface configuration subject to the given 
constraints. Fortunately many of the systems in which we are interested are 
at temperatures well below the melting points of the crystalline components 
or of any possible grain-boundary eutectic, so that we may reasonably 
minimize the energy, thus calculating effectively the configuration and energy 
of the boundary at 0°K. This is the approach we shall take, returning in the last 
section of the chapter to consider the effect of finite temperature on the 
calculation. 

Because we are concerned in this book with the epitaxial growth of one 
crystalline material upon another, we can usefully restrict the range of possible 
problems to those in which we are given one semiinfinite crystal possessing a 
plane surface of known orientation. We then seek to determine the structure 
and energy of the interface between this crystal and another, which may be 
of finite thickness, growing upon it with arbitrary orientation. The actual 
preferred growth orientations will then be those that yield minima in the 
interfacial energy. 

I I I . Symmetry Considerations and Coincidence Lattices 

Naive ideas about epitaxial growth place emphasis upon the principle that 
coherent overgrowth of crystal material B on crystal A is likely to occur if 
some undistorted crystal plane of B can be laid down on top of the exposed 
face of A in such a way that a large fraction of the B atoms can be made to 
coincide with the sites of A atoms. We might go further and say that the 
greater the number of coincidences per unit area, the lower will be the energy 
of the resulting interface. Both these principles are correct and must find 
expression in any complete theory of interface energy. They obviously rest 
heavily on consideration of the symmetry and structure of the two crystals 
involved, and the geometrical working out of these ideas constitutes the theory 
of coincidence lattices. We shall take a little time to consider this before going 
on to the main development of our ideas. 

Consider two crystals of quite general structure and imagine that the lattice 
of each is extended to fill all space so that these two lattices interpenetrate. 
Let us then translate one lattice relative to the other so that they have one 
lattice point as a common origin. For two arbitrary crystals there will in general 
be no other lattice point in common, but there will always be pairs of lattice 
points between which the spacing is arbitrarily small, if we go far enough 
away from the origin. We can therefore, by infinitesimal adjustment of orien
tation angle and lattice parameter, bring three other pairs of lattice points 
into coincidence with negligible change in the physics of the situation. If these 
pairs of points are chosen so that they are not collinear, and not coplanar 
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with the origin, then this action will have generated a three-dimensional grid 
of common lattice points that is called the "coincidence lattice." Its properties 
have been investigated by Friedel (1926) and more recently by Ranganathan 
(1966). 

From our present point of view, possible low-energy boundaries between 
these two crystals in the given relative orientation are geometric planes con
taining a high density of coincidence-lattice points, and the reciprocal of the 
density of these points in the selected plane gives a measure of the grain-
boundary energy. It is possible to extend these ideas to include dislocated 
coincidence boundaries (Brandon, 1966) but this need not concern us here. 

Once we have established a coincidence lattice between two crystals we 
can proceed one step further, following the analysis of Bollmann (1967). 
Choosing one of the coincidence-lattice points as origin we can define a 
homogeneous linear transformation s4 performed about the point that 
establishes a one-to-one correspondence between the lattice points r of one 
crystal and the lattice points r' of the other by 

r' = s4x (3) 

The transformation s4 will generally involve a rotation, a change in scale, and 
perhaps an angular distortion as well. In Fig. 1, for example, if we consider 
this to be an (001) section through two interpenetrating simple cubic lattices, 
sä represents a relative rotation of t a n - 1 (1/2) = 26°34' about the [001] axis 
together with a uniform expansion by a factor 51/2. 

Looking again at Fig. 1 and remembering that the transformation s4 was 
applied about any one of the coincidence-lattice points, we see that we could 
have achieved exactly the same result by applying the same transformation stf 
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FIG. 1. A (001) section through two interpenetrating cubic lattices, represented by O and 
0> respectively, related by a transformation .s/, showing points of the coincidence lattice 
and with points of the 0-lattice marked by x . 
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about any one of the set of points marked x . The set of all these points 
together with the coincidence-lattice points constitutes what Bollmann has 
called the "0-lattice" in the plane. In fact the 0-lattice, like the coincidence 
lattice, is a three-dimensional concept and consists of the complete set of 
points about which the transformation «a/ could have been applied to achieve 
the same result. For the particular case shown in Fig. 1, the 0-lattice really 
consists of a set of lines running parallel to [001] and passing through the 
0-lattice points in the (001) plane. For a more general transformation the 
0-lattice is a discrete three-dimensional grid of points. 

The 0-lattice has an analytical significance that we shall consider later. 
For the present we simply note the symmetry of both crystals about the 
points of the 0-lattice, which means that, no matter what elastic relaxation 
may take place when the physical interface is formed, the 0-lattice points 
will remain stationary. It can also be shown, though this is most useful for 
situations more complex than that shown in Fig. 1, that the 0-lattice gives 
directly the intensity maxima in the moire pattern obtained by superposing 
the interface atoms of the two crystals (Bollmann, 1967). 

IV. Interface Energy as a Variational Problem 

Following this apparent digression, let us return to the program outlined 
in Section II: that we should write down an expression for the total energy of 
our bicrystal system and then minimize this with respect to the atomic con
figuration of the interface, subject to the constraints assumed for the physical 
problem. Formally we might proceed as follows. 

Consider the potential energy V0 (r) of a B atom at a point r just outside 
the plane surface of a crystal of A atoms located at points R£. If the interaction 
potential between individual A and B atoms is ^ΑΒ(Γ)> t n e n 

ν0(τ) = Σ'νΑΒ(τ-^) (4) 
i 

where the minus on the summation indicates that it extends only over the 
lower half-space. If the B atom is actually part of a semiinfinite crystal of B 
with atom positions r = R/, then the energy of the entire system can be 
written 

ΕοΊ = Σ + Σ" *>AB(R/-R;) + \ Σ"*ΛΑ(Κ*-Κ/) + i Σ + W R / - R / ) 
i j i*j i*j 

(5) 
the last two terms representing the self-energies of the two semiinfinite 
crystals. 

So far this formulation contains no variational parameters, but in principle 
we could simply vary all the atomic positions R and R' within small limits so 
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as to keep the interface position fixed and thus determine the configuration 
giving minimum energy. This is, of course, quite impracticable because of the 
number of atoms involved, so that we must devise some simplification. 

To do this we note two things. In the first place, the interactions νΑΒ(τ) 
are generally of reasonably short range so that they should extend over only 
a few atomic layers on either side of the interface. In the second place, the 
variations of the self-energy terms describe essentially the elastic behavior 
of two semiinfinite crystals subject to stresses on their free surfaces. Provided 
these stresses are not too large, we should then be able to use continuum 
elasticity theory to approximate the variation of these last two terms. 

To this end, let us suppose that all the atoms near the interface are varied 
in position so that Rf moves to Rt + Ff — F0, etc., where F0 is a small translation 
of the whole semicrystal and the Ff are small individual atomic displacements. 
The total energy then becomes 

ΕΊ = Z + I " " A B ( R / + F / - R ; - F , . + F 0 ) 
i j 

+ El0 + £A
T(Fl fF2, . . . ) + El + £B

T(Fi ' ,Fa ' , . . . ) (6) 

where E\Q and El0 are the self-energies of the two undistorted semicrystals, 
£,

A
T(F1,F2,...) is the elastic strain energy in semicrystal A resulting from the 

displacement of the surface atom at Rf by an amount Fi5 etc., and similarly 
forB. 

In this form the problem is now solvable in principle, although the number 
of independent parameters F and F' would still make a practical calculation 
prohibitively tedious. However, a great simplification is possible in special 
cases when there is a high density of coincidence-lattice points in the interface. 
When this happens, we note that symmetry requires the coincidence-lattice 
points to remain fixed during elastic relaxation and also requires the pattern 
of atomic displacements to repeat in each coincidence-lattice cell. The 
constancy of 0-lattice points during relaxation imposes further symmetry 
requirements on the distortions F. In these special cases then, the variational 
formulation given in (6), together with explicit forms for E/J(Fi) and £'BT(Fi) 
should make calculation relatively simple, since the number of independent 
variational parameters is small. 

However, two problems with this approach have meant that it has not been 
seriously followed up. In the first place, the assumption of simple linear 
elastic behavior implied by the form of (6) is not justified for the individual 
atomic displacements implied in the variational problem. This necessarily 
introduces errors of unknown magnitude into the result. Second, there seems 
to be no simple way in which results of general utility can be derived from the 
variational function given in (6); all we can do is to calculate specific cases 
and then attempt to generalize. 
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In the next section we shall see that, by adhering to the general philosophy 
of the variational method but by carrying out all the operations in reciprocal 
space, we can overcome both these objections and derive valid and useful 
general results. 

V. The Coincidence Boundary in Reciprocal Space 

Returning to Eq. (4), we can write the potential energy of a B atom at 
position r outside a plane face of an A crystal with atomic positions R as 

Po(r) = Σ " »An(|r-R(|) s Σ " " ( r - R ) (7) 
i R 

where we shall adopt now the simplified notation on the right. This potential 
can be written in terms of its Fourier components V0 (k) as 

V0(r) = (TV/δπ3) JY0(k) exp(i'k.r) dk (8) 

where N is the (infinite) number of atoms in the crystal, 

V0(k) = (I/TV) Σ " v(k) e x p ( - / k . R) (9) 
R 

and v(k)9 the Fourier transform of the atomic potential, is given by 

v(k) = j i;(r) exp ( - ik · r) dt (10) 

With this artifice we can now write down the total interaction energy between 
the two crystals by summing V0 (r) over all the atomic positions R' of the 
B crystal, assumed undistorted, to give 

V = Z+^o(R') = ( 1 / 8 π 3 ) Σ + Σ " f i ; (k)exp[ik. (R'-R)]rfk (11) 
R' R' R J 

Now we know that a sum like Σ κ exp(/k«R), taken over an infinite crystal, 
vanishes unless k is a vector of the reciprocal lattice of that crystal. The sums 
over R and R' in (11) are only over semiinfinite crystals, so we cannot make 
exactly this statement. We can, however, reexpress the crystal geometry if 
necessary so that, instead of using a normal primitive cell, we use a cell of 
the same volume having two of its primitive translations lying in the plane of 
the interface so as to define a surface lattice for each crystal. We denote the 
surface lattice vectors by RS,RS', respectively, and the areas of the surface 
unit cells by A, A'. We can also define a surface reciprocal lattice for each 
crystal, following the usual rules, and denote the vectors of this lattice by 
Gs, Gs', respectively. Similarly, ks is the component of k parallel to the surface. 
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Since the sums in (11) over Rs and Rs' are infinite, we can perform these 
in one of two equivalent ways to write either 

Σ exp(ik.· Rs) = (4π2/Α) <5(ks-Gs) (12) 

or 

Xexp(/ks .Rs ' ) = 7Vs'(5ks>Gs, (13) 
Rs' 

where TV/ is the total number of B atoms in the interface. Substituting (12) 
and (13) into (11), integrating with respect to ks, and dividing by the interface 
area NS'A'9 we can write the interface energy per unit area as 

E0 = (li2nAA')5kstGJkstGs,^0(ksiB3)cxp(iK-Bs) (14) 

with a sum over all Gs and Gs' being understood and with 

r0(k,,B3) = Σ+Σ~ ίv(k)explik3(R3'-R3 + B3)-]dk3 (15) 
R3' R3 J 

where the subscript 3 represents the component of a vector normal to the 
interface, and we have redefined R and R' so that each is measured from an 
origin fixed on a lattice point of its respective crystal and B is the vector 
joining these two origins. 

If we remember that so far we are dealing with two completely undistorted 
semicrystals, then (14) has a specially simple significance. The two Kronecker 
deltas require that the only nonvanishing terms have Gs = Gs' = ks, which 
means that they arise from the points of coincidence of the two reciprocal 
surface lattices Gs and Gs', each point of coincidence contributing an energy 
*Γ0, which depends on the Gs involved and also on the relative displacement of 
the two crystals. Now the reciprocal surface lattices of two crystals will have 
points of coincidence only if the direct surface lattices have coincidences, so 
that what we have evaluated is the energy of a coincidence boundary before 
any elastic relaxation takes place. Notice that this energy is quite explicitly 
given and that it depends upon the interatomic interaction potential v(r) 
through its Fourier components v(k), upon the extent of the coincidence 
through the deltas, which select only the coincidence terms in reciprocal 
space, and upon the relative displacement of the two crystals through the 
vector B. 

Actual evaluation of the interface energy is relatively straightforward, 
since the sums in (15) need to be taken over only a few pairs of layers on either 
side of the interface, the vector B being appropriately chosen for each pair to 
agree with the specified physical situation. If only the orientations of the two 
crystals and of the boundary are fixed, then we have the three components of 
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a single vector B that can serve as variational parameters. The minimum-
energy configuration will possess certain symmetry, generally corresponding 
to ks · Bs = nn. There may, however, also be energy maxima or subsidiary 
minima corresponding to other symmetric configurations. This situation is 
illustrated in Fig. 2. The true minimum-energy configuration will depend 
upon the form of v(r) and on the lattice geometry. 
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FIG. 2. An example of generalized matching between (100) faces of two fee crystals with 
lattice parameters in the ratio 21/2:1 and relative orientation 45°. Depending upon the form 
of the interaction potential either one of the configurations (a) or (b) might represent the 
minimum energy. 

An important thing that we should point out about this approach is that 
not only is it quantitative and related to a priori atomic interaction potentials, 
but it also includes considerations of crystal symmetry automatically. In fact, 
the analysis of terms contributing to E0 in (14) is formally very similar to the 
0-lattice analysis discussed in Section III, the distinction being that here the 
whole treatment is carried out in reciprocal space so that there is a duality 
rather than a direct correspondence between the geometry in the two cases. 

VI . The Interface Problem in Reciprocal Space 

To treat a more general interface, and indeed to treat a coincidence boundary 
to a better approximation, it is necessary to allow for elastic displacement of 
atoms near the interface and for the effect of this upon more distant parts of 
the crystals. The method of approach is essentially that of Section IV, except 
that again the analysis is performed in reciprocal space. 

The displacements that we will include in the theory are those in which a 
surface A atom, initially at R, moves to R + F(R) and the B atom at R' moves 
to R' + F'(R'). Atoms deeper in the crystal will also move, but we may suppose 
this to be largely as a result of elastic interactions with their nearest-neighbor 
atoms of like kind rather than because of interactions across the interface. 
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While the vectors F are confined to describing the displacement of surface 
atoms, they are not necessarily parallel to the interface. 

Now we have seen that for a general interface we can always define a 
coincidence lattice, although its primitive vectors may be extremely large. 
We can therefore construct the reciprocal lattice K of this superlattice with 
all vectors K lying parallel to the interface and, because of the periodicity in 
real space, it is necessary that all possible displacements F(R) can be written 
as a Fourier series 

F(R) = - £ F K e x p ( / K . R ) (16) 
K 

or, since F(R) is necessarily real, 

F(R) = - £ + 2 [ D K s i n ( K . R ) + C K c o s ( K . R ) ] - C 0 (17) 
K 

where C and D are real vectors. The corresponding expansion for the B 
crystal is 

F'(R') = £ + 2[DK' sin(K. R ) + CK cos(K · R')] + C0' (18) 
K 

The change in sign relative to (17) is for reasons of symmetry and clearly 

C0 + C0' = B (19) 

If we substitute these distortions into (11), then the interaction part of the 
total interface energy becomes 

E? = ^ ι 2 + Σ i^(k)exP[/k'(R, + F - R - F ) ] ^ k (20) 

To reduce this rather complicated expression we can make use of a Bessel 
function expansion (Watson, 1944; Fletcher and Adamson, 1966) to write 

exp[2ik-CKcos(K-R)] = £ /w/m(2k· CK) exp(ZmK.R) (21) 
m = —oo 

and 

exp [2ik · DK sin (K · R)] = £ Jm (2k · DK) exp (imK · R) (22) 
m = — oo 

Similar expressions arise in the theory of sidebands in frequency-modulated 
radio transmissions, although the analysis is usually carried out in a rather 
more limited way than has been done here. The significant thing about these 
two expansions is that, when they are substituted into (20), along with similar 
expressions for F', the sums over Rs and Rs' no longer have forms like (12) 
and (13) but rather like 

£exp[ i (k s - /«K 1 - / iK 2 ) -R 8 ] = Nsöks>Gs+mKi+nK2 (23) 
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so that when we come to calculate the energy per unit area, as in (14), we have 
contributions not just from those ^>(ks) for which ks = Gs = Gs', but also 
from those with ks = Gs = Gs

/ + mK1+«K2 and ks = Gs' = Gs-\-mK1-\-nK2 
for all possible vectors Kl and K2 corresponding to allowed distortion 
components and for all integers n and m. The Fourier components of the 
distortion have thus coupled together potential components Gs and Gs' that 
are not coincident. 

If we follow the same sort of procedure that led from (11) to (14), then we 
find from (20) that the interaction energy per unit area of interface can be 
written 

E{ = (ΙβπΑΑ') Σ r0 (ks, B3) exp(i k,. Bs) 
ks 

x | n V 0 ( 2 k . D K ) / 0 ( 2 k . C K ) j | n V 0 ( 2 k . D K ' ) / 0 ( 2 k . C K ' ) j 

f oo 
X ^k s ,G s ^ks,Gs'+ Σ Σ [ ] l <>Gs + nK,Gs' $ks, Gs' 

(̂  n = l K 

+ ΣΣ+[].·^*^+··1 (24) 
n = l K J 

The bracket [ ] x is defined by 

L/0(2ks.DK) y0(2ks.CK)J 

and similarly for [ ] r with CK and DK replaced by CK' and DK'. There are 
further terms in expansion (24), involving the coupling of Gs and Gs' by two 
vectors K, but we need not be concerned with these here. Explicit expressions 
for these second-order coupling terms are given by Fletcher and Adamson 
(1966) and a numerical error in these expressions is corrected by Lodge (1970). 

These expressions (24) and (25) look forbiddingly complex, but in fact 
ks«CK and ks«DK are generally small quantities so that only terms with n = 1 
or 2 need usually be considered and the second-order coupling terms are 
also small. We have therefore succeeded in expressing the interaction energy 
E{ across the interface in a relatively simple form involving a set of variational 
parameters CK, DK, CK

r, and DK
r. Their number is potentially the same as 

the number of variational parameters F shown in (6) for the same problem in 
direct space but we shall see that it is possible to reduce the number of sig
nificant K-values to a quite small set so that the variational problem then 
becomes tractable. In addition, the elastic problem for each semicrystal is 
soluble in simple terms and does not do violence to our physical assumptions, 
as we shall see in the next section. 
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VI I . The Elastic Problem 

In our initial formulation we agreed to treat interactions across the interface 
on an atomic basis, as we have done, and to approximate the energy behavior 
of the two homogeneous semicrystals by continuum elasticity theory. Since 
the basis distortions envisaged in the theory are sinusoidal surface waves with 
wavevector K and amplitudes and polarizations specified by CK and DK, this 
elastic problem can be fairly readily solved and, because of the continuous 
nature of the surface displacements, no reasonable physical assumptions are 
violated. In addition, since these elementary distortions for the elastic problem 
are all orthogonal, their contributions to the elastic energy can be individually 
evaluated and then simply summed. 

A detailed discussion of the elastic problem has been given by van der 
Merwe (1950, 1963) both for the case of a semiinfinite crystal and for a crystal 
of finite thickness. A more recent investigation has been made by Lodge 
(1970). Without going into details of the analysis we can fairly easily see that, 
if the surface of a semiinfinite crystal is distorted by the imposition of a 
sinusoidal displacement 

FK exp (i K · r) = 2 [DK sin (K · r) + CK cos (K · r)] (26) 

where we have now replaced the discrete variable R by the continuous variable 
r, then the amplitude of the displacement decays more or less expotentially 
away from the surface with a characteristic penetration depth of order 2π/Κ. 
If we take the smallest allowed K for the problem, then this distance is equal 
to the largest of the primitive vectors of the surface coincidence lattice. Any 
crystal overgrowth that is much thicker than this is essentially infinite from 
an energy point of view, while for thinner overgrowths their finite thickness 
must be taken into account. 

For the case of a semiinfinite A crystal subject to surface displacements FK, 
Lodge (1970) shows that the elastic energy per unit area is 

Ε* = μ^+Κ 
K 

where subscript Kx refers to the component of a displacement in the direction 
of K, the ^-component is normal to the interface, and K2 is chosen so that 
the 1,2,3 directions form a right-handed set. The quantities μ and σ are, 
respectively, the shear modulus and the Poisson's ratio for the crystal material 
A, assumed isotropic for simplicity. An exactly similar expression with μ, σ 
replaced by μ', σ' applies to crystal B. 

Cl + Dl + 'K2 κ2 

4(1 - * ) 
3-4σ 

(Cl + D2
Kl + Cl + D2

K3) 
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From (27) we can see that elastic displacements with different wavevectors 
K are in fact independent but that for any given K the longitudinal displace
ments (subscript Kx) and the normal displacements (subscript K3) are coupled, 
as is clearly necessary on physical grounds. The distortion components of 
the two crystals A and B could be taken as independent variational parameters, 
but a considerable simplification occurs if we instead apply the simple 
mechanical condition that elastic stresses must balance across the interface 
when it is in its equilibrium configuration. Again components with different 
K-vectors are orthogonal and a set of six relations between the twelve com
ponents of CK, DK, CK', and DK' can be derived. Because of the KUK2 
distortion coupling, these relations are also coupled, their explicit form being 
given by Lodge (1970) as 

μΟΚι = μ'σΚ2 (28) 
μΌΚ2 = μ'ϋ'Κ2 (29) 

ß(CKi + DKl) = [ μ 7 ( 3 - 4 σ 0 ] ( ^ 3 + ^ ) (30) 

ß'(Ci3-D'Kl) = [μ / (3 -4σ) ] (^ 3 -2 ) Α 1 ) (31) 
ß(CKl-DK3) = Qi7(3-4(T')](Ci1-/)i s) (32) 
μ\0'Κι + D'Ki) = [μ/(3 - 4σ)] (CKi + DKi) (33) 

Rather similar treatment could be given to the case of an overgrowth 
crystal of finite thickness following the lead given by van der Merwe (1963) 
but this has not yet been done. Following his discussion and that given above 
we should expect the semiinfinite results to be approximately applicable to 
all but the very thinnest layers. 

VI I I . The Variational Problem in Reciprocal Space 

We can now put together all the information contained in (24) and (27) to 
write for the total interface energy per unit area 

E = E{ + EC
A + E» = E{ + EQ (34) 

The variational parameters in the problem are the CK, DK, CK', and DK' for 
all the allowed values of K but these can be reduced simply to the CK and DK 
by use of the relations (28)-(33). Let us now look at the totality of possible 
K-vectors and their associated distortions to see how they can be enumerated. 

One of the great attractions of the variational approach is the opportunity 
it provides for simplification. An approximate result can always be obtained 
by considering just a few of the variational parameters that are judged on 
physical or mathematical grounds to be most important and, if one's intuition 
is good, this result may approach quite closely to the fuller treatment achieved 
with many more parameters. 
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To derive a simple criterion for this choice let us remember that distortions 
for different K-vectors are independent and then consider the form of E for a 
single DK only, such that Gs = Gs' + K. From (24), (25), (27), and (34) if we 
expand the Bessel functions and keep first-order terms only, we find 

E * E0 (B) + Q(B) DK + PKDK
2 (35) 

where E0 is the coincidence part (if any) of the boundary energy, g(B) 
contains the atomic interactions across the interface, ^ ( G J and T^J)(GS'), 
P represents the elastic coefficients, and B is, of course, the displacement of 
one crystal relative to the other. Clearly P > 0, and B can be chosen so that 
ß < 0 . 

If we minimize with respect to DK and B, we find 

E^E0- (Q2/4PK) (36) 

with 

DK = -Q/2PK (37) 

Clearly the approximation is valid only for GS*DK < 1 but from it we can 
deduce two things: the contribution of a given DK to the energy is greatest if 
K is very small, and the contribution is large if the potential components 
T^)(GS) and ^ ( G s ' ) for the two points are large. The energy (36) actually 
appears to have an infinite negative value as we approach K = 0, the 
coincidence-boundary configuration, but the real situation is that the coinci
dence boundary of any order represents a cusped minimum in the energy, 
the depth of this minimum depending on the strength of the potential com
ponents T^>(GS) brought into coincidence. This already tells us a great deal 
about interface behavior and makes it plain that it is not only the geometry 
that is important but also the detailed form of the interaction potential v (r). 

To select the distortion wavevectors to be included in the calculation we 
therefore examine the pattern of the interface in reciprocal space and select a 
suitable number of short K-vectors joining reciprocal lattice points where the 
potential is large. There is an upper limit to the magnitude of any physically 
significant K-vector set by the criterion that it must lie within the first 
Brillouin zone of both the crystals concerned, but we may often select vectors 
that are limited to being much smaller than this. The choice will also be 
determined to some extent by the range of the interaction potential v(k) in 
reciprocal space. An example of such an initial choice of K-vectors is shown in 
Fig. 3. 

When it comes to second-order terms, the most important and therefore 
the only ones worth including are those made up from combinations of first-
order K-vectors. Thus, for example, if K and K' link pairs of reciprocal lattice 
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FIG. 3. Portion of the reciprocal lattice, near the origin, for two similar cubic crystals 
related by a twist boundary of small angle. The dashed circle represents either the range of 
the potential v(k) or the arbitrary region inside which distortion vectors K are considered. 
The principal distortion K-vectors are shown, together with the way they can combine to 
give second-order terms. 

points in first-order, we can always find a pair of points linked by K + K', and 
this term in E{ should be included since it requires no additional contribution 
to the elastic energy Ee. 

The practical feasibility of this whole scheme depends on the possibility of 
selecting a sufficiently small set of important K-vectors so that the compu
tation becomes tractable. This in turn depends partly on the range of v(k) 
in reciprocal space and partly on the geometry of the interface. The method 
becomes difficult for very small-angle boundaries because of the many small K 
involved, but this is not of much importance since it is just this region that is 
simply and validly covered by the dislocation theory. 

One of the main contributions of the formalism itself is to place on a firm 
quantitative basis the energy considerations relating to coincidence and near-
coincidence boundaries. The coincidence boundaries are shown to represent 
local cusped minima in the interface energy and their behavior is shown to be 
critically related to the actual form of the interatomic potential. Crystal 
symmetry is automatically taken into account and there is no necessity for 
any artificial picture involving hierarchies of dislocations. A simple dislocation 
is, in fact, represented by the distortions associated with a single set of vectors 
«K, where K is the first-order distortion wavevector for a particular set of 
reciprocal lattice points. Inclusion of alternate couplings of the type n(K + K') 
is equivalent to the introduction of another dislocation set of higher order. 
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I X . The Interaction Potential 

In many problems in metal-crystal physics it is usual to assume a simple 
analytic form for the interaction potential t>(r), both the Lennard-Jones 
potential 

Kr) = t ; 0 [ ( r / r 0 ) - 1 2 -2 ( r / r 0 ) - 6 ] (38) 

and the Morse potential 

v(r) = i > 0 { e x p [ - 2 a ( r - r 0 ) ] - 2 e x p [ - o ( r - r 0 ) ] } (39) 

being common choices. In either case the parameters v0 and r0 are chosen to 
match as well as possible the lattice parameters, the cohesive energy, and the 
elastic properties derived from experiment. Similarly in the treatment of ionic 
crystals we might usefully assume a Coulombic or shielded Coulombic 
attraction or repulsion together with a hard-sphere or other appropriate 
repulsion at short distance. 

These potentials are particularly useful in direct lattice calculations because 
of their simple analytical form. Apart from this and the r~6 term in (38) they 
have no particular physical significance. In the present situation what we need 
for a simple model calculation is a potential that has a simple analytical form 
for v(k) in reciprocal space and that adequately represents the real interatomic 
potential. Since there is a dual relation between v(k) and v(r), in the sense 
that if i; (r) has a short range then the range of v (k) is long and vice versa, it is 
rather difficult to find a suitable model potential for trial calculations. For real 
calculations, of course, we must try to use the real form of v(r) derived as 
accurately as possible from calculations and experimental data, so that this 
difficulty cannot be avoided. Even for a real potential, however, we shall see 
that there is some freedom of choice associated with the exact form of the 
potential within the inaccessible repulsive core, and we may use this freedom 
to advantage in real calculations. 

A suitable model potential for exploratory calculations introduced by 
Fletcher (1967) has the form 

i?(k) = Hl(a + b)/ä]3{exp[2.5k(a + b)-4] + l}-1 (40) 

where H is a scale constant. This potential is designed for the case where the 
atoms of crystals A and B have radii proportional to a and b9 respectively, 
so that the lattice parameters of the two crystals vary in the same way. The 
form of the potential in real and in reciprocal space for the case a = b is 
shown in Fig. 4. It can be seen that the potential v(k) has an appreciable value 
only for k < 3π/α9 while v (r), its form in real space, has a physically reasonable 
shape and is small for r > 1.5a. With the particular form given by (40), v(r) 
has a minimum at r = i(a + b), the depth of which is independent of b/a. 
The potential is, of course, spherically symmetrical. 
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FIG. 4. (a) The Fourier transform v(k) and (b) the direct potential v(r) used in the model 
calculation, both drawn for the case b = a. 

In the next section we shall detail the results of some calculations with this 
potential, which show the general features expected from the formal develop
ment. We must remember, however, that a model calculation with such a 
potential, instructive though it may be, has only a limited resemblance to 
reality. We can improve the resemblance by choosing the few available para
meters to give agreement with important physical data but we cannot be sure 
how valid are the other predictions of the model. 

It is more satisfying, from a physical point of view, to derive a more 
realistic potential from first principles and then to perform our best calculation 
without the aid of any adjustable parameters. This we shall try to do in 
Section XI. 

X. Calculations with a Model Potential 

A set of survey calculations with the model potential (40) was carried out 
by Fletcher (1967) to check the general feasibility of the method for interface-
energy calculations and to examine quantitatively its predictions for misfit 
boundaries of various types. The system chosen for analysis was a twist 
boundary between (100) faces of two fee crystals A and B having atomic poten
tial parameters a and b, respectively. The cubic-lattice parameters thus turn 
out to be about 2.5a and 2.5b for the two crystals, and the surfaces are simple 
square lattices with parameters slightly less than a and b. 

For the purposes of the calculation several additional simplifications were 
made: integral (15) for i^0 was evaluated as a sum over a relatively small 
number of equally spaced /r3-values, only one atomic layer on either side of 
the interface was taken into account in evaluating E{, and a simplified elastic 
analysis was used. This last involved neglect of the interaction term in (27) 
and replacement of the other terms by 

Ε^ = (Μ/α3)Σ+Σ(εΙ + »ϊ) (41) 
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With the choice of 5.8 for the constant Hin (40) to give a convenient arbitrary 
energy scale, a value of 500 for M made the various elastic moduli of the order 
expected physically. In retrospect this oversimplification was probably 
undesirable, but it is hardly worthwhile to recompute the results with less 
crude approximations. 

Figure 5 shows the energy of the twist boundary as a function of angle Θ 
for various values of the ratio b/a. When b = a there is a deeply cusped energy 
minimum at the orientation of exact fit, 0 = 0, and the interface energy then 
rises smoothly in the same manner as predicted by the dislocation theory 
result (1). Instead of decreasing for Θ > 20° and then becoming unphysically 
negative, however, the interface energy reaches a plateau for Θ > 20°. The 
predicted energy is also symmetrical about Θ = 45° and shows a cusp for Θ = 
90° identical with that at Θ = 0°, as is physically necessary. 

The behavior of interface energy as a function of misfit ratio b/a = 1+5 
is shown more explicitly in Fig. 6. For 0 = 0 there is a logarithmic cusp of the 

30 
degrees 

FIG. 5. Energy, in units of 1/a2, of a twist boundary of angle Θ between two crystals with 
lattice-potential parameters a and b, respectively (Fletcher, 1967). 
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FIG. 6. Energy, in units of 1/a2, of a twist boundary between two crystals, with lattice-
potential parameters a and b, respectively, for boundary twist angles of 0 ( · ) and 45° (O) 
(Fletcher, 1967). 

type predicted by dislocation theory (2) for b = a, although this is superposed 
on a general rising trend of interface energy with parameter b which is a result 
of the particular form of the potential (40). 

The theory also predicts the existence of subsidiary minima at points 
Θ = 45°, b = 21/2a9 and Θ = 0, b = la, corresponding to more general coinci
dence boundaries. The first of these cusps is clearly visible in Fig. 6 but the 
second is not, presumably because the magnitude of the relevant Fourier 
components of the potential is too small. 

From the results of the computation for the distortion vectors CK and DK 
it is also possible to determine atomic positions in the elastically relaxed 
interface. This is generally of little practical interest but there is a possibility 
of identifying the major K-vectors by electron-diffraction methods applied to 
thin films. 

Using the theory with a simple model potential like this we are thus able to 
reproduce the results of the dislocation theory for small misfits and to make 
an estimate of interface energy for large misfits. For the particular potential 
chosen the number of variational parameters was only small and the cal
culation only involved quite a small amount of computer time. The more 
difficult cases of real potentials and of tilt boundaries, however, may no 
longer be simple computational problems. 
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As a second example of the use of the model potential (40), let us apply it 
to estimate the grain-boundary energy in aluminum. To this end we use the 
full treatment of the elastic problem set out in Section VII and choose the 
constant H in the potential (40) for b = a to give best agreement with the 
experimental elastic moduli used in (27). To do this, the total energy of an fee 
crystal with interaction potential (40) is evaluated and, upon minimization 
with respect to the lattice constant a0, including interactions up to fourth 
neighbors, we find 

a0 = 1.3838a (42) 

The same minimization gives the bulk modulus in terms of H and thus allows 
H to be evaluated. This is considered to be a better procedure in the present 
case than to use the sublimation energy, because of the importance of relatively 
small atomic displacements in the theory. The value of / /and the experimental 
values used for μ and σ are 

H = 4.25 x 10"35ergcm3, μ = 2.62 x 1011 dynecm"2, σ = 0.345 
(43) 

The assumption of isotropic elastic properties for aluminum is a reasonable 
approximation but by no means exact. 

Once more in this calculation only one atomic layer on either side of the 
interface was taken into account, since this is a reasonably good approxi
mation when the interface plane is of low index. The results of the model 
calculation are shown in Fig. 7. The calculated energy of a high-angle twist 
boundary relative to the zero-angle (no grain-boundary) energy is 1014 
erg cm - 2 . The only available experimental value is 630+100 erg cm"2, 
determined by Astrom (1957) using a calorimetric method. The agreement is 
reasonable but not very close. 

X I . An Ab Initio Potential for Aluminum 

To illustrate the problems encountered in a calculation based upon a 
potential derived from ab initio physical argument, rather than on a criterion 
of calculational simplicity, we shall consider the case of aluminum. There 
are two reasons for this choice: aluminum is a metallurgically important 
material so that it is of value to understand its properties as fully as possible, 
and there is a reasonable body of theoretical work on which we can base our 
calculations. The argument we follow is essentially that given by Lodge (1970). 

Aluminum is a metal, and the effective interaction between its atoms is 
therefore composed of two parts: the repulsive interaction between the 
aluminum ion cores and the shielding effect of the conduction electrons on 
this interaction. The shielding effect of the electrons is complicated by the 
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FIG. 7. Energy of a twist boundary in aluminum as calculated using a model potential. 

electronic band structure of the metal, and the sharp decrease to zero of the 
electron density above the Fermi energy limits its shielding effectiveness at 
short wavelengths so that the total atomic-interaction potential resembles an 
exponentially shielded repulsion with, superposed upon it, an oscillation 
related to the shielding cutoff at the Fermi energy. It is the principal minimum 
produced by these oscillations that is responsible for the overall attractive 
potential between atoms. The matter has been discussed in detail by Ziman 
(1964) and by Harrison (1966). 

It would be out of place to enter into a detailed discussion of this matter 
here and we content ouselves with reproducing, as the solid line in Fig. 8, 
the interaction potential calculated by Harrison (1966). At small distances 
the potential has the form of a simple Coulomb repulsion Z2e2/r, where Ze is 
the effective ionic charge. 

One of the principal difficulties with using Harrison's potential in a cal
culation of grain-boundary energy arises from this highly repulsive core 
potential at short distances. The infinity in the potential at r = 0 leads to a 
large spread of v(k) in reciprocal space, and any truncation of the expansion 
leads to large oscillations in v(r) that completely mask the true form of the 
potential. 



7 ENERGY OF INTERFACES BETWEEN CRYSTALS 551 

It is possible, however, to reduce this difficulty by a simple artifice. We note 
that, because of the limited energy available, ion cores are never forced to 
overlap appreciably, and it is therefore quite immaterial what is the form of 
v(r) at very small r, so long as it is large and positive. We may therefore use 
the modified core potential. 

t/(r) 
( Z V / Ä ) [ 2 - P ] , r<R 

Z2e2jr, r > R 
(44) 

where R is chosen small enough (actually 3.5 a. u. or about 1.9 Ä) that overlap 
to the altered region never occurs. These two potentials join smoothly as shown 
in Fig. 9 and the effect on the range of v(k) is very great, as shown in Fig. 10. 
Using the modified potential it now becomes possible to truncate v(k) in 
k-space without doing violence to its representation of the important part of 
the potential, as shown in Fig. 8. We see that a cutoff at kM = 4.64 a.u. 
(8.8 Ä"1) represents the potential quite well, although somewhat under
estimating the depth of the primary minimum, while a cutoff at kM = 2.7 a.u. 
(5.1 Ä"1) gives the correct overall behavior but overestimates the depth of 
this minimum by about a factor of two. 

Here we arrive at the prime difficulty of the variational method when 
applied to real potentials, and this is simply computational. For the aluminum 
structure a cutoff in the potential v(k) at kM — 2.7 a.u. is found to include 
20 pairs of reciprocal lattice points with Gs<kM9 which would coincide 

FIG. 8. Effective interaction potential between ions in aluminum as calculated by Harrison 
(solid line) and the modifications introduced by using kM cutoffs of 4.6365 a.u. (dashed 
line) and 2.7 a.u. (dotted line) (Lodge, 1970). 
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FIG. 9. The direct Coulomb interaction (solid line) compared with the altered direct 
interaction used in the calculation (dashed line) (Lodge, 1970). 

at Θ = 0. This implies 20 primary K-vectors and 120 distortion components, 
although symmetry considerations reduce the number of independent com
ponents to 15. For a potential cutoff at kM = 4.64 a.u., this number is in
creased by about a factor of 3. At small twist angles 0, the primary K-vectors 

E 
£ 300 
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k/kF (kF = 0.9273 a.u.) 

FIG. 10. Comparison between the Fourier transform of Harrison's potential for aluminum 
(dashed line) and the Fourier transform of the modified interaction potential. The units are 
rydbergs (Bohr radius)3. The tail of the modified potential is shown on an expanded scale 
in the inset (Lodge, 1970). 
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are all small, convergence is slow, and second-order terms are important so 
that the calculation, while feasible, is computationally difficult. For larger 
twist angles, K-vectors joining reciprocal lattice points that are not equivalent 
at Θ = 0 become more important but, generally speaking, the second-order 
contributions are much smaller and the energy depends primarily on those 
few distortions for which K happens to be small. 

Lodge (1970) has carried out calculations for a twist boundary in aluminum 
using a potential truncated at kM = 2.7 a.u. and trying various simplifications 
and extensions. The convergence was poor for Θ < 5°, except for the identical-
fit case 0 = 0, but the familiar cusped minimum was apparent. The boundary 
energy was found to have a plateau for θ between about 10 and 45° with an 
energy of about 1700 erg cm"2, which does not accord very well with the 
experimental value of 630 ± 100 erg c m - 2 found by Astrom (1957). 

In retrospect the reasons for this descrepancy are clear. In his calculation, 
Lodge truncated the potential itself at kM = 2.7 a.u., and this, as is plain 
from Fig. 8, has the effect of deepening the primary potential minimum by 
about a factor of two with a consequent increase by this factor in the binding 
energy across the interface at Θ = 0. In the spirit of our variational method it 
should not be that we truncate the potential at a particular value of kM but 
rather that only distortion vectors K joining reciprocal lattice points Gs with 
Gs < kM should be included. All coincident reciprocal-lattice points should 
always be included in the energy summation. 

It is actually quite easy to revise Lodge's calculation in this way since, in 
general, there are no coincidences besides k = 0 except for special coincidence-
boundary configurations. Ideally the coincidence sum should be taken over all 
values of k but in fact, from Fig. 8, a sum to k = 4.64 a.u. is fairly adequate. 
When this revised calculation is performed and another error in the computer 
program corrected, the high-angle grain-boundary energy is found to be about 
590 erg cm"2. This is in excellent agreement with experiment, although this 
may be fortuitous. 

X I I . Surface Entropy and Free Energy 

As we discussed in Section II, the quantity that we have considered and 
attempted to calculate has, so far, been the interfacial energy, whereas the 
quantity that is relevant in most physical problems is actually the interfacial 
free energy. For a liquid-vapor interface the surface free energy is identical 
with the surface tension, but for solid boundaries or interfaces these two 
quantities are physically and numerically quite distinct. The surface free 
energy is a scalar quantity (although its value depends in general on surface 
orientation) and it must always be positive, or the solid will spontaneously 



554 N. H. FLETCHER AND K. W. LODGE 

disintegrate to create extra surface. The surface tension, on the other hand, is 
generally a tensor describing surface stress and may have either positive or 
negative components, depending on the nature of the forces between atoms in 
the crystal. The same distinction applies to crystal interfaces. 

If we denote the surface energy by ε, the surface free energy by y, and the 
surface entropy by σ, then at temperature T we have as usual 

γ = ε-Τσ (45) 

so that y and ε are equal at 0°K and 

σ = -dy/δΤ 

For liquid-vapor interfaces we know that the surface entropy σ is positive 
so that y decreases with rising temperature and vanishes at the critical point. 
For the interface between a crystal and its supercooled melt, however, there 
is indication from nucleation experiments that y increases with rising tem
perature so that σ is negative. This behavior accords with the experimental 
fact that there does not appear to be any critical point associated with the 
solid-liquid transition. 

If we consider a simple grain boundary, then the thermodynamic properties 
of the material on either side of the boundary are identical, while the boundary 
region itself is characterized by having a higher energy per atom than the bulk 
material and a less ordered configuration. We should thus expect both the 
surface energy and surface entropy to be positive in this case. It is more 
difficult to make the same assertion about an interface between two different 
crystals without detailed thermodynamic and statistical analysis, but it seems 
likely that it is still true. This conclusion implies that the free energy of a 
crystalline interface should decrease as the temperature is raised, so that all 
our calculated energies will be overestimates if they are taken to represent 
the free energy at a finite temperature. 

It is difficult to estimate the numerical magnitude of the surface entropy 
without a very detailed analysis. In the first place there are vibration modes 
that differ in frequency from those of the bulk crystal and therefore contribute 
to surface entropy; there are also configurational terms that depend on the 
degree of disorder in the interface. It is tempting to assume simply, in the case 
of grain boundaries, that the free energy goes to zero at the melting point, but 
this is much too extreme a variation since melting is a phase change of first 
order rather than the higher order associated with a liquid-vapor critical 
point. It seems likely, rather, that the interface free energy near the melting 
point has probably at least half the magnitude it has at 0°K. Part of this change 
will be associated with configurational entropy terms, and part will be due to 
the effect of the decrease in shear modulus μ as the temperature is raised. 
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XIII. Relation to Epitaxial Growth 

In our discussion we have seen that it is possible to calculate, quite generally, 
the energy of an interface between two materials provided that the interaction 
potential between pairs of atoms is known together with the elastic moduli 
of the two bulk crystals. In practice the calculation is feasible provided that 
the interface constitutes a low-index crystallographic face for each of the two 
crystals and that the interaction potential can be reduced to a form that does 
not have too large an extension in reciprocal space. 

Extension of this treatment to the case where one of the crystals is of small 
thickness is relatively straightforward, since this only involves modification 
of the elastic energy component. If, however, we consider a further extension 
to the case where one of the crystals is of finite lateral extent, then we encounter 
more fundamental difficulties because the lattice sums parallel to the interface 
are no longer infinite. If the patch of overgrowth is finite but sufficiently large 
to contain several periods of the shortest distortion wavevector K, then it is 
legitimate to use the results for an overgrowth of infinite lateral extent as a 
good approximation. If this condition is not fulfilled, then the overgrowth 
island will be relatively small and an energy calculation in real space along 
the lines indicated in Section IV is probably the best way to proceed. Bearing 
these limitations in mind, we can now proceed to draw some general con
clusions from our treatment, which will be of use in considering epitaxial 
growth problems. 

Oriented overgrowth of one crystal upon another can occur when there is 
a well-defined minimum in the interfacial free energy for some particular 
orientational relationship of the two crystals relative to the specified boundary. 
Generally the boundary will be fixed relative to the substrate crystal and the 
orientational freedom will be that of the overgrowth. 

For two arbitrary crystals of different materials there will not, in general, 
be any exact coincidence boundaries so that, instead of a cusped minimum as 
for the case b/a = 1.0 in Fig. 5, we are more likely to find a simple minimum 
as for the case b/a = 1.05 in the same figure. This means that, because of the 
finite curvature at the trough of the minimum, we should expect to find a small 
distribution in angle for different overgrowth islands rather than a precise 
orientation. 

To estimate the expected spread we might reasonably evaluate the total 
interfacial free energy Ffor an island nucleus of critical size and we should then 
expect to find a distribution ΑΘ in orientation angle such that AF(0) ~ kT. 
Applying this criterion to the case of b/a = 1.05 in Fig. 8 and assuming the 
reasonable value of 100 erg cm"2 for the plateau value of interface energy, 
a critical island embryo of 1000 atoms and a substrate temperature of 400°K, 
we find a spread in orientation of Δ0 ^ ± 2°. If deposition were carried out 
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at a lower substrate temperature under the same deposition conditions, then 
the size of the critical embryo would decrease much more rapidly than kT so 
that the spread ΑΘ would increase. This calculation is, of course, simply for 
illustration and quite different values may be appropriate in physical situations 
of interest. 

Another important possibility is that there may be more than one possible 
orientation of the overgrowth that approximates to a coincidence boundary 
of some order and therefore represents a local minimum in the interfacial 
free energy. Generally there will be one of these minima that is substantially 
deeper than the others, but occasionally we may find two minima of comparable 
depth. An example is the epitaxial growth from the vapor of ice onto an (001) 
face of iodine (Bryant et αί, 1959) where growth is observed with either the 
(0001) or the (2ΤΪ0) planes of ice parallel to the interface. The growth habit 
of the ice islands either as hexagons or rectangles makes distinction between 
the two growth modes obvious. 

Examination of the interface geometry shows that each of these configur
ations differs by about 6% from a simple coincidence boundary. It does not, 
of course, immediately follow that the interface energies are nearly equal in 
the two cases, since this may depend on details of the interaction potential, 
but it is not surprising that this is so. If we can calculate the interface energy 
in the two configurations, then it is possible to apply standard heterogeneous 
nucleation theory (e.g., Fletcher, 1963) to evaluate nucleation rates for the 
two crystal habits as a function of temperature and supersaturation. The 
critical embryos in this case are certainly large enough for our interface theory 
to be applied with good approximation. 

This last remark has introduced the subject of nucleation theory, and it 
may be appropriate to conclude with a few comments on this topic. Broadly 
speaking, we are here concerned only with heterogeneous nucleation on a 
plane substrate, and it is useful to distinguish two extreme cases representing 
high and low supersaturations, respectively. 

In the high-supersaturation regime we are concerned with the deposition of 
a relatively nonvolatile material, such as a metal, onto a substrate whose 
temperature is very much less than that of the vapor source. The effective 
supersaturation at the substrate surface is therefore very high and the critical 
embryo for epitaxial growth contains only a few atoms. It would be pointless 
to try to apply any of our techniques to this case since the assumptions from 
which they were derived are not even approximately valid. Even the appli
cation of classical nucleation theory represents an extrapolation that can 
hardly be justified, and the problem should properly be treated by straight
forward cluster statistical techniques. 

In the low-supersaturation regime, on the other hand, we are concerned 
with deposition of a relatively volatile material onto a substrate at a temperature 
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nearly equal to that of the source so that the supersaturation is only of the 
order of a few percent. Alternatively, the situation may involve deposition 
from a solution with only a small supersaturation. In such cases the critical 
embryo typically contains thousands or even millions of atoms, the interface 
area may be of order 10"10 cm2 or larger, and the embryo may be many 
molecular layers in thickness. Under these circumstances classical nucleation 
theory can be applied with a good deal of confidence and the techniques 
outlined above can be used to evaluate the interface energy, which plays such 
a critical role in determining the manner of the epitaxial growth. 
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